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Analytic vortex solutions in an unusual Mexican-hat potential

Stavros Theodorakis
Department of Natural Sciences, University of Cyprus, P.O. Box 537, Nicosia 1678, Cyprus

~Received 2 June 1997!

We introduce an unusual Mexican-hat potential, a piecewise parabolic one, and we show that its vortex
solutions can be found analytically, in contrast to the case of the standarduCu4 field theory.
@S1063-651X~97!12310-8#

PACS number~s!: 03.50.Kk
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Spontaneous symmetry breaking has been studied t
tionally through theuCu4 potential,

V~C!5l~ uCu22v2!2. ~1!

This potential is usually called a Mexican-hat potential
particle physicists, even though the actual Mexican hat
somewhat different wings. The above potential is relev
not only to particle physics, but also to condensed ma
physics. In superfluid heliumII, for example, it is used for
writing down the free energy, and it leads to a lot of inte
esting physics.

Of particular interest are the vortex solutions that this p
tential admits. In the context of superfluid helium, these w
studied quite a long time ago@1#. Due to their inherent non
linearity, the corresponding field equations have to be sol
numerically. There are analytic approximations for the v
tex solutions@2#, but the exact solutions can only be foun
numerically@3#.

Vortices play an important role in many fields of physic
It may be of interest then to have analytic vortex solutio
that could be used in further calculations involving vortice
Such analytic solutions would also be of pedagogical in
est, since they would show explicitly the various propert
of a generic vortex solution.

In this paper we study an unusual Mexican-hat poten
that admits vortex solutions. These vortex solutions are a
lytic though, and are expressed in terms of standard spe
functions of mathematical physics. Not only can one stu
therefore the properties of the solutions analytically, but o
could also use them in other calculations involving vortic

Our potential is

V~C!5l~ uCu2v !2. ~2!

This potential is a Mexican-hat potential, but with a kink
C50. It is a piece-wise parabolic potential. Such potentia
but with real order parameters, have also been used
Ginzburg-Landau theories of oil-water-surfactant mixtu
@4#, because they lead to analytically solvable equations.

The static free energy is then

F5E d3xF \2

2m
u“Cu21l~ uCu2v !2G . ~3!

If we measureC in units of v, x, y, andz in units of 1/g,
andF in units of lv2/g3, whereg252ml/\2, then we ob-
tain the dimensionless free energy
561063-651X/97/56~4!/4809~4!/$10.00
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f 5E d3x@ u“Cu21~ uCu21!2#. ~4!

This is minimized when

¹2C5C2
C

uCu
. ~5!

This is the basic field equation. We note first that it adm
one-dimensional solitonic solutions:

C~z!5
z2z0

uz2z0u ~12e2uz2z0u!, ~6!

z0 being arbitrary. BothC and ]C/]z are continuous atz
5z0 in this solution. It is worthwhile to note that the one
dimensional solitonic solutions of theuCu4 theory are also
known analytically, unlike theuCu4 vortex solutions.

Let us now concentrate on the solutions of our potentia
Eq. ~2! for a single isolated vortex. We are thus looking f
solutions

C5c~r !einf, ~7!

wherex5r cosf, y5r sinf, n being a positive integer, with
c(r ).0. In that case Eq.~5! reduces to

d2c

dr2 1
1

r

dc

dr
2S n2

r 2 11Dc521. ~8!

Note that this equation is a linear differential equation, alb
an inhomogeneous one, while the corresponding one in
uCu4 theory is nonlinear. The dimensionless free energy fo
cylinder of radiusR, and lengthL along thez axis, becomes

f 52pLE
0

R

drr F S dc

dr D 2

1
n2

r 2 c21~c21!2G . ~9!

Equation~8! clearly shows thatc→1 asr→`. In particular,
c'12(n2/r 2) in that limit. Hence the free energy contain
a piece proportional ton2 that diverges logarithmically as
R→`. For largeR then it is clear that the solutionn51 is
best, as is usually the case for isolated vortices.

It is interesting to examine the behavior ofc for small r .
Equation~8! easily yields thatc is linear inr for small r , if
n51, whilec'r 2/(n224) if n.2. We have then an impor
tant difference between our potential and theuCu4 theory
4809 © 1997 The American Physical Society
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4810 56STAVROS THEODORAKIS
when it comes to highly quantized vortices. Namely, wh
c}r n in the uCu4 theory, herec}r 2 for n.2.

Let us now multiply Eq.~8! by rc and then integrate from
0 to R. We shall find a relation that enables us to write t
free energy in the exact form

f

2pL
5F rc

dc

dr G
0

R

1E
0

R

drr ~12c!. ~10!

This equation is valid for alln.
We now present the solutions of Eq.~8!, beginning with

the case wheren is a positive odd integer. Let us define fir
the function

g~r !512
n

sin~np/2!
E

0

p/2

e2r cosucosnu du, ~11!

with n51,3,5, . . . . Note that g→1 as r→`, and that
g(0)50. In particular, whenr is small,g'pr /4 for n51,
andg'r 2/(n224) for n53,5,7, . . . . We caneasily prove
the identity

n2

r 2 5
n

r sin~np/2!
E

0

p/2 ]

]u Fe2r cosuS sinu cosnu

1
n

r
sinnu D Gdu. ~12!

Its right hand side is equal to

n

sin~np/2!
E

0

p/2

e2r cosuS cosnu2cos2u cosnu

1
cosu

r
cosnu1

n2

r 2 cosnu D
512g1

d2g

dr2 1
1

r

dg

dr
1

n2

r 2 ~12g!. ~13!

Equations~12! and~13! imply then thatg satisfies Eq.~8!. It
is thus a particular solution of Eq.~8!. The most genera
solution is g(r )1c1Kn(r )1c2I n(r ), in terms of modified
Bessel functions. However,Kn diverges at the origin andI n
diverges at infinity, whileg is well behaved at both limits
Thus we must havec15c250. Hence

c~r !5g~r !. ~14!

In particular, forn51 we get

C5eifS 12E
0

p/2

e2r cosucosu du D . ~15!

This is the exact solution representing a singly quanti
vortex, and the main result of this paper. It can be written
the form

C5
p

2
eif@ I 1~r !2L1~r !#, ~16!
d
n

whereI 1(r ) is a modified Bessel function andL1(r ) a modi-
fied Struve function@5#. The correspondingc(r ) is shown in
Fig. 1.

Actually, one expects this result, because the functi
2c(2 ir )/p can be shown to satisfy the standard Struve d
ferential equation@5#. It is thus, in fact, that one gets the idea
of using the function of Eq.~11!, since the integral represen-
tations of the Struve functions involve integrals such as tho
used in Eq.~11!.

We can easily show, using Eq.~15!, thatc(r )'pr /4 for
r→0, for this singly quantized vortex. Furthermore, th
asymptotic properties of the modified Struve function giv
for r→`,

c~r !→12
1

r 22
3

r 4 . ~17!

Thus the behavior of our singly quantized vortex at infinit
and at the origin resembles that of the correspondinguCu4

vortex in these limits. Indeed, thec for the uCu4 vortex is
linear at the origin and tends to 12(2r 2)21 at infinity.

Let us now calculate the free energy, using Eq.~10!. The
surface term is 2/R2, for large R. We can use furthermore
the identity@5#

r @12p~ I 12L1!/2#5
]

]r S pr

2
~L02I 0! D1

p

2
~ I 02L0!

~18!

to get

f

2pL
5

2

R2 1S pr

2
~L02I 0! D

0

R

1
p

2 E
0

R

~ I 02L0!dr.

~19!

But we also have@5# the propertiesL0(0)50, I 0(0)51,
L0(R)2I 0(R)'22(R211R23)/p, and *0

R(I 02L0)dr
'@2 ln2R12g2R22#/p, whereg50.577 215 7 is Euler’s
constant. Using all these, we obtain the final result for th
singly quantized isolated vortex:

f

2pL
5 lnR1~g1 ln221!1

1

2R2 ' ln~1.31R!. ~20!

FIG. 1. The solution for a singly quantized isolated vortex.
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56 4811ANALYTIC VORTEX SOLUTIONS IN AN UNUSUAL . . .
The corresponding result for theuCu4 singly quantized vor-
tex @1#, for a cylinder with dimensionless radiusR, is
ln(1.46R).

For vortices with circulationn53,5,7, . . . , we can find
the free energy by combining Eqs.~10! and ~14!, in which
case we get

f

2pL
'nE

0

p/2

du
sinnu

sin2u
@12e2R sinu~11R sinu!#.

~21!

In order to evaluate this integral, we split it into two piece
one piece from 0 tov, and a second piece fromv to p/2,
wherev is a small number such that sinv'v ande2R sinv

'0. We can then drop the exponential in the*v
p/2 piece,

sinceR is large, and we can let sinu'0 in the*0
v piece. Thus

f

2pL
'n2E

0

v du

u
@12e2Ru2Rue2Ru#1nE

v

p/2

du
sinnu

sin2u
.

~22!

Now the integrals can be done easily, leading to

f

2pL
'n2S lnR1g1 ln22 (

k51

~n21!/2
2

2k21
2

1

nD ~23!

for n53,5,7, . . . . For example, f /2pL'9 ln(0.345R) for
n53, while the correspondinguCu4 vortex @1# has a free
energy f /2pL'9 ln(0.38R) for a cylinder of lengthL and
dimensionless radiusR. For n55, 7, 9 the energies of ou
vortices are 25 ln(0.20R), 49 ln(0.144R), and 81 ln(0.11R).
Of course, the casen51 is the physically interesting one
since it is energetically preferred. We shall find nonethel
the vortex solutions for the case whenn is even as well,
since the results are simple and analytic.

We examine now the casen5even, which is actually
simpler than the case of oddn. We can easily show that th
function

h~r !5n(
k50

n/2
~n2k21!!

k!
r 2k2n~21!k1n/22n22k21

~24!

is a particular solution of Eq.~8!, if n is even. The most
general solution would bec(r )5h(r )1c1Kn(r )1c2I n(r ).
We must havec250, otherwise the solution will diverge a
infinity. We also note that the most divergent part ofKn(r )
at the origin is (n21)!2n21r 2n, while the most divergen
part ofh(r ) at the origin isn! r 2n(21)n/22n21. The solution
must not have anr 2n piece at the origin, hence we must ha
c152n(21)n/2. Remarkably, this choice ensures thatall
divergences at the origin disappear, leaving us withc(0)
50, as expected for a vortex. Thus the exact vortex solu
for n5even is

c~r !5h~r !2n~21!n/2Kn~r !. ~25!

For example, then52 vortex has

c~r !512
4

r 2 12K2~r !, ~26!
,

s

n

while then54 vortex has

c~r !512
16

r 2 1
192

r 4 24K4~r !. ~27!

We can now evaluatef /2pL using Eq.~10!. For the vortex
with n52, straight-forward integration using the solution
Eq. ~26! yields, for largeR,

f

2pL
5@4 lnr 12rK 1~r !14K0~r !#0

R1
8

R22
32

R4 , ~28!

which reduces to

f

2pL
54 lnR14g24 ln2221

8

R22
32

R4 '4 ln~0.54R!.

~29!

The corresponding result@1# for the uCu4 vortex withn52 is
4 ln(0.59R). We note that here too, just as with the casesn
51 and 3, the coefficients ofR within the logarithm are
quite close to those that are appropriate for theuCu4 vortices.
In detail, our vortices have the coefficients 1.31, 0.54, 0.3
for n51, 2, 3 respectively, while theuCu4 vortices have
1.46, 0.59, 0.38.

Let us calculate the free energy of the othern5even vor-
tices as well, using Eqs.~10! and ~25!. The integral
*0

RrK n(r )dr is needed. We can easily show that

d

dr S 2rK n21~r !12n (
i 51

n/221

~21! iKn22i~r !

1n~21!n/2K0~r !D
5rK n~r !, ~30!

whence

f

2pL
'2n1n2F lnR1g2 ln 22 (

i 51

n/221 S n

2
2 i D 21G .

~31!

The divergences that the various modified Bessel functi
of Eq. ~30! exhibit at the origin cancel, confirming thus th
correct evaluation of the free energy.

We have thus completed the evaluation of the exact
lated vortex solutions for our unusual Mexican-hat potent
We have been able to obtain analytic solutions for any
culationn, odd or even. This success is due to the fact t
the field equation is not nonlinear. It is a linear inhomog
neous equation, and it can therefore be solved exactly.
find the usual features that a vortex must have, i.e., thac
vanishes at the origin, while it tends to a constant at infin
The free energy depends logarithmically on the radius of
vortex, as expected. Finally, the actual values of the f
energy are quite close to those of the free energy for
standarduCu4 vortex.

Aside from the pedagogical value of these solutions,
pecially when discussing spontaneous symmetry break
our results may be used in more elaborate calculations
volving vortices, in many fields of physics.
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