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Analytic vortex solutions in an unusual Mexican-hat potential

Stavros Theodorakis
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We introduce an unusual Mexican-hat potential, a piecewise parabolic one, and we show that its vortex
solutions can be found analytically, in contrast to the case of the staftifatdield theory.
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Spontaneous symmetry breaking has been studied tradi- s ) )
tionally through thd ¥ |* potential, f:f X[ VP[?+(|W]-1)7]. 4
- 2_ 22
V(W) =N (¥ ~v%)* (D This is minimized when

This potential is usually called a Mexican-hat potential by ¥

particle physicists, even though the actual Mexican hat has VU =¥— —. 5)
somewhat different wings. The above potential is relevant V|

not only to particle physics, but also to condensed matte
physics. In superfluid helium, for example, it is used for
writing down the free energy, and it leads to a lot of inter-
esting physics.

Of particular interest are the vortex solutions that this po- V(2z)
tential admits. In the context of superfluid helium, these were
ﬁtnljecgtreigyqtuk:faec?)rlfensgpgrr::jeinagl]%(ile]lndDeuq?J;?iéuilrh:\]\t]ee '[gnbtengglveéo bemg grbnrary. Both\lf and &‘P/Qz are continuous az
numeric,all There are analytic approximations for the vor-_ 20 " .thls solu.tlon.. Itis vyorthwhﬂe (0 hote that the one-

Y. y pp dimensional solitonic solutions of thel|* theory are also
tex solutions[2], but the exact solutions can only be found K ticall like théw |4 vort uti
numerically[3]. nown analytically, unlike théW¥|* vortex solutions.

. . . ' , Let us now concentrate on the solutions of our potential of
Vortices play an important role in many fields of physics. . . i
. ) . Eq. (2) for a single isolated vortex. We are thus looking for
It may be of interest then to have analytic vortex solutions,

that could be used in further calculations involving vortices.sOIUIIOnS

This is the basic field equation. We note first that it admits
one-dimensional solitonic solutions:

Z— ZO

= — e lz=zl
o (e, ®)

Such analytic solutions would also be of pedagogical inter- W= y(r)en? @)
est, since they would show explicitly the various properties ’
of a generic vortex solution. wherex=r cosp, y=r sin¢g, n being a positive integer, with

In this paper we study an unusual Mexican-hat potential,(r)>o0. In that case Eq5) reduces to
that admits vortex solutions. These vortex solutions are ana-

lytic though, and are expressed in terms of standard special d’y 1dy [n?
functions of mathematical physics. Not only can one study WZ*‘ Tdr r—z+1 p=-1 ®

therefore the properties of the solutions analytically, but one
could also use them in other calculations involving vorticesNote that this equation is a linear differential equation, albeit
Our potential is an inhomogeneous one, while the corresponding one in the
W¥|* theory is nonlinear. The dimensionless free energy for a
V() =\ (|- v)2 @ | theonyist ee energy
cylinder of radiusk, and lengthL along thez axis, becomes

&
dr

This potential is a Mexican-hat potential, but with a kink at R
¥=0. Itis a piece-wise parabolic potential. Such potentials, f:277|_f drr
but with real order parameters, have also been used in 0
Ginzburg-Landau theories of oil-water-surfactant mixtures
[4], because they lead to analytically solvable equations. Equation(8) clearly shows tha#y— 1 asr—co. In particular,
The static free energy is then y~1—(n?/r?) in that limit. Hence the free energy contains
a piece proportional tm? that diverges logarithmically as

2 2

U VA

h? R—o. For largeR then it is clear that the solution=1 is
F:J d* 2m V2N (W] -0)?). 3 best, as is usgally the case for isolated vortices.
It is interesting to examine the behavior ¢ffor smallr.
If we measure¥ in units ofv, X, y, andz in units of 14, Equation(8) easily yields thaiy is linear inr for smallr, if
andF in units of A\v?/y%, wherey?’=2m\/#?, then we ob- n=1, while ¢y~r?/(n?>—4) if n>2. We have then an impor-
tain the dimensionless free energy tant difference between our potential and {hNe|* theory
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when it comes to highly quantized vortices. Namely, while
Y1 in the | ¥ |* theory, hereyor? for n>2.

Let us now multiply Eq(8) by r ¢ and then integrate from
0 to R. We shall find a relation that enables us to write the
free energy in the exact form

v

0.8

L U7

= r¢ao+f0 rr(l—g). (10 .6
0.4

This equation is valid for alh.

We now present the solutions of E@), beginning with
the case whera is a positive odd integer. Let us define first ©-
the function

N

n /2 2 4 6 8 10 12 14
g(r)zl—m JO e " Yeomg de, (11)
FIG. 1. The solution for a singly quantized isolated vortex.

with n=1,3,5.... Note thatg—1 asr—«, and that : o . .
50) Iyt when sl =4 frn- 1. SAIEAC) o8 ocied esselrton k) 8 o
andg~r?/(n?-4) forn=3,5,7.... . We careasily prove Fiq. 1 ' P 4

the identity 9. L.

Actually, one expects this result, because the function
2¢(—ir)/ 7 can be shown to satisfy the standard Struve dif-
e’ cos?( Sing cos ferential equatiof5]. It is thus, in fact, that one gets the idea
of using the function of Eq(11), since the integral represen-
tations of the Struve functions involve integrals such as those

n n Jw/2 d
27 rsinnwl2) Jo 36

+ n sinnﬁ) dé. (12)  usedin Eq(11).
r We can easily show, using EQL5), that ¢(r)~ mr/4 for
r—0, for this singly quantized vortex. Furthermore, the
Its right hand side is equal to asymptotic properties of the modified Struve function give,

for r—oo,

n 2 —r cosy
Snna2) J'O e comd—cogd cond 3
_4.

1
lﬁ(l’)—>l—r—2_r 17
cos 6 n?
T cosno+ COSW) Thus the behavior of our singly quantized vortex at infinity
and at the origin resembles that of the correspondibitf
d’g 1dg n? vortex in these limits. Indeed, the for the |¥|* vortex is
=l-gtgetrar frr -9 13 Jinear at the origin and tends to-1(2r?) ! at infinity.

Let us now calculate the free energy, using Bd). The
Equationg12) and(13) imply then thatg satisfies Eq(8). It ~ surface term is B2, for largeR. We can use furthermore
is thus a particular solution of Ed8). The most general the identity[5]
solution isg(r)+c;K,(r)+c,l,(r), in terms of modified

Bessel functions. HoweveK, diverges at the origin and, ([1— (1, — £q)/2]= 7 (W_r (£0_|0)) + ™ (10— Lo)
diverges at infinity, whileg is well behaved at both limits. ar \ 2 2
Thus we must have;=c,=0. Hence (18
to get
P =g(r). g ©9
In particular, forn=1 t A |)R+7TJR(| Lo)d
n particular, forn=1 we ge —=—+| = (Lo— = - r.
p g 27l  R2 2 (Lo~ lo 2 o 0 Lo

w2 (19)
\If=ei¢< 1—J e " ©Ycox de). (15)

0 But we also havd5] the propertiesCy(0)=0, 15(0)=1,
Lo(R)—1o(R)=—2(R *+R 3 /a, and [§(lo—Lo)dr
This is the exact solution representing a singly quantized<[2 [n2R+2y—R~2]/a, where y=0.577 215 7 is Euler's
vortex, and the main result of this paper. It can be written inconstant. Using all these, we obtain the final result for the

the form singly quantized isolated vortex:
g =" v c 16 LS N2—1)+ — ~In(L31R). (20
=5¢€ [11(r)—Lq(r)], (16) SN +(y+In )+ﬁ~ n(1.31R). (20



56 ANALYTIC VORTEX SOLUTIONS IN AN UNUSUAL . .. 4811

The corresponding result for th&|* singly quantized vor- ~ while then=4 vortex has
tex [1], for a cylinder with dimensionless radiuR, is

Inl4&®). _ sry=1- 2,192 . 27)
For vortices with circulatiom=3,5,7 ..., we can find rz o4
the free energy by combining Eg&l0) and (14), in which .
case we get We can now evaluaté/27L using Eq.(10). For the vortex
with n=2, straight-forward integration using the solution of
f fw/Z sinné 1—e-RSW(14R s Eq. (26) yields, for largeR,
> L~n o ﬁm[ e (1+R sing)]. f

(21) = ——=[4Inr+2rK (r)+4Kq(r) 5+ R (28

In order to evaluate this integral, we split it into two pieces, .
one piece from 0 tas, and a second piece from to /2,  Which reduces to
wherew is a small number such that sircw ande™ RSN

~0. We can then drop the exponential in tfig”* piece,
sinceR is large, and we can let $#+0 in the [ piece. Thus

8 32
—— =4INR+4y—4In2-2+ —5— —7~4 In(0.54R).

27l R® R
(29)

f o df @2 sinné ; 4 TR
~n2 _a—RO_ —R6 The corresponding restlt] for the|¥|* vortex withn=2 is
oL Jo 7 [1-e Roe "’]+n de Sia

41n(0.5R). We note that here too, just as with the cases
(22 =1 and 3, the coefficients dR within the logarithm are
quite close to those that are appropriate for|thé* vortices.

In detail, our vortices have the coefficients 1.31, 0.54, 0.345
for n=1, 2, 3 respectively, while th¢¥|* vortices have

Now the integrals can be done easily, leading to

; (n—-1)12 1
2| IR+ y4in2— S __) (23 146,059,038,
2L =1 2k=1 n Let us calculate the free energy of the othereven vor-
tices as well, using Egs(10) and (25). The integral

for n=3,57... . Forexample,f/2rL~91In(0.34R) for Rk (r)dr is needed. We can easily show that
n=3, while the corresponding¥|* vortex [1] has a free
energy f/2wL~9 In(0.3R) for a cylinder of lengthL and d 21 _
dimensionless radiuR. Forn=5, 7, 9 the energies of our gr | TrKn-a(r)+2n ;1 (—1)'Ky-2(r)

vortices are 25 In(0.2R), 49 In(0.144R), and 81 In(0.1R).

Of course, the casa=1 is the physically interesting one,

since it is energetically preferred. We shall find nonetheless +n(—1)"2Ky(r)

the vortex solutions for the case whaenis even as well,

since the results are simple and analytic. =K (1), (30)

We examine now the case=even, which is actually
simpler than the case of odd We can easily show that the whence
function
f

——~-—n+n?
(n k 1) p2k=n(_ 1 )k+nizgn-2k-1 2wl

n/2

h(r)= nE

n/2—-1 n -1
INR+y—1In2— 2 (§—|) }
(3D

24
24 The divergences that the various modified Bessel functions

is a particular solution of Eq(8), if n is even. The most of Eq. (30) exhibit at the origin cancel, confirming thus the
general solution would be(r)=h(r)+c;K,(r)+c,l,(r).  correct evaluation of the free energy.

We must havec,=0, otherwise the solution will diverge at ~ We have thus completed the evaluation of the exact iso-
infinity. We also note that the most divergent partkgf(r)  lated vortex solutions for our unusual Mexican-hat potential.
at the origin is (—1)!2"*r ", while the most divergent We have been able to obtain analytic solutions for any cir-
part ofh(r) at the origin isn!r ~"(—1)™?2"~1. The solution  culationn, odd or even. This success is due to the fact that
must not have an™ " piece at the origin, hence we must have the field equation is not nonlinear. It is a linear inhomoge-
c;=—n(—1)"2 Remarkably, this choice ensures tlak  neous equation, and it can therefore be solved exactly. We
divergences at the origin disappear, leaving us wi(0) find the usual features that a vortex must have, i.e., that
=0, as expected for a vortex. Thus the exact vortex So|ut|orYan|SheS at the Orlgln while it tends to a constant at |nf|n|ty

for n=even is The free energy depends logarithmically on the radius of the
vortex, as expected. Finally, the actual values of the free
P(r)=h(r)—n(—1)"2K(r). (25  energy are quite close to those of the free energy for the
standard W|* vortex.
For example, then=2 vortex has Aside from the pedagogical value of these solutions, es-

pecially when discussing spontaneous symmetry breaking,
our results may be used in more elaborate calculations in-

4
() =1= 12 +2Ka(r), (26) volving vortices, in many fields of physics.
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